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Abstract

Newton's method has proved to be a very efficient method for solving st rictly
convex unconstrained minimization problems. For the nonconvex case, various
modified Newton methods have been proposed.

In this paper, a new modified Newton method is presented. The method is
a linesearch method, utilizing the Cholesky factorization of a positive-definite
portion of the Hessian matrix. The search direction is defined as a linear comibi-
nation of a descent direction and a direction of negative curvature. Theoretical
properties of the method are established and its behaviour is studied when
applied to a set of test problems. //, -

Keywords: Unconst rained minimization, modified Newton method, negative
curvature, Cholesky factorization, linesearch, steplength algorithm

1. Introduction

In this paper we propose a method for finding a local min inizer of the problem

minimize f(x),
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A modified Newton method

where f is a twice-continuously differentiable function. This fundamental problem
has been studied extensively and various methods have been proposed that use first
and second derivatives. The aim is to generate a sequence of iterates {Xk)'= 0 that
converge to a point i satisfying the first- and second-order necessary conditions, i.e.,
Vf(i) is zero and V2f(i) is positive semidefinite.

Most niethods that utilize second-derivative information may be viewed as extei-
sions of Newton's method, in the sense that they are identical to Newton's method
in a neighbourhood where the Hessian is positive definite. If the Hessian is not
positive definite at sowe iterate, the Newton step may not reduce the objective
function. Consequently, if the method is requirud to generate a sequence of improv-
ing estimates, some modification is needed. Such modified Newton methods have
been studied for two decades, see for example Fiacco and McCormick [FM68], Gill
and Murray [GM741, McCormick (McC77j, Fletcher and Freeman tk_ uj, Muk;,
and Polak [MP78], Kaniel and Dax [KD791, Mor6 and Sorensen [MS791 and Gold-
farb [Go180].

Most modified Newton methods solve equations using a factorization of the le.,
sian. The method proposed by Gill and Murray [GM74] uses a modified Cholesky
algorithm, in which a diagonal matrix is implicitly added to the tI,.ssian to make
it positive definite. A similar modified Cholesky algorithm based on an alternative
diagonal correction has been proposed by Schnabel and Eskow [SE88]. The methods
proposed by Fletcher and Freeman [FF77] and Mor6 and Sorensen [MS79] use the
Bunch-Parlett-Kaufman factorization of the Hessian (see [BP71), [BK77J).

In the method proposed in this paper, the Cholesky algorithm withl complete
pivoting is performed until all potential pivot elements are smaller than a preassigned
tolerance. The Cholesky factor is used to obtain a search direction, which may be
a linear combination of a descent direction and a direction of negative curvature.
It is shown that the gradient is zero and 'the smallest eigenvalue of the Hlessiai
is bounded below by a small negative number at all limit points of the iterative
sequence. The magnitude of the bound may be predetermined by adjusting certain
preassigned tolerances.

2. Basics

2.1. Assumptions

The following assumptions are made throughout the paper:

Al. The objective function is twice continuously differentiable.

A2. The level set S(xo) = {x : f(x) <_ f(xo)} associated with the starting point x't
is compact.

2.2. Preassigned parameters

The proposed method depends on seven preassigned scalar parameters. These pa-
rameters specify different tolerances and for reference, their purpose and range of
values are are briefly summarized here.



3. Preliminary Discussion

c E (0, 1) is a parameter peeded for the Cholesky factorization. It
is used to determine the dimension of the positive-definite
portion of the Hessian.

hin > 0 is a parameter used to reject small pivots in the factorization.
No pivot elements smaller than c2hmi,, are accepted.

ain, ainmx define an acceptable interval for the initial steplength.

71 E (0, 1) specifies a tolerance associated with the direction of negative
curvature.

ie E (0, ) is a parameter used in the linesearch to guarantee a sufficient
decrease in f.

- E (0, 1) is a parameter used to determine the rate of decrease of the

steplength in the backtracking linesearch.

2.3. Terminology

The idea of a descent direction and a direction of negative curvature are important
when computing the search direction. A vector p is a descent direction at a point x if
Vf(x)Tp < 0. Likewise, p is a direction of negative curvature at x if pTV 2f(x)p < 0.

Given a symmetric matrix

K=(T NT)N G

with T nonsingular, the Schur complement of T in K will be denoted by K/T, and
is defined as

KIT = G - NT-1N.

The matrix KIT will be referred to as "the" Schur complement, when the matrix
T is clear from the context. For further discussion of the Schur complement, see
(ottle [Cot74].

Throughout the paper, the subscript k denotes the iteration index, and sub-
scripts i and j denote particular components or columns of a matrix or vector.
When element i, j of a matrix Hk is addressed, we refer to it as hij--i.e., the low-
crease letter is used and the iteration subscript is dropped. Also, for vectors and
matrices, when the term norm is used, we mean the Euclid.?an vector normi and the
corresponding induced matrix norm.

3. Preliminary Discussion a-For& I

At the k-th iteration of the proposed method, xk denotes the current iteration point.

9k (lenotes Vf(xk) and Hk denotes V 2f(xk). With Newton's method as the niodel, "ed U
it is desirable to compute the Newton search direction whenevwr IIk is sufficientlVy tt 10

positive definite. If Ilk is known to be positive definite, such a direction may be
computed using the Cholesky factor of the Hessian. Whenever tile Ilessian is not
sufficiently positive definite, the method presented here is based on the Cholesky .100/

likctorization of a subset of the rows and columns of H. Complete )ivoting is I, ty Codes
! L and/or

LKLLmU



4 A modified Newton method

used, that is, the maximum diagonal element is chosen as the pivot at each step.
Suppose that ni steps of the factorization have been performed and let /1 denote
the permutation matrix representing the column interchanges. We have

HITHk H H' i  H 1 2  and lTg 9g1  (3.1)

where H11 is a positive-definite prinicipal submatrix of order ni, with Cholesky
factor R 11. If R12 = R1T 111 2 , we obtain the identity

RTHH 1 0 \(Ril R12RT 1 0 IITHkH/H / 0 1

where HTHkH/H 11 is the Schur complement H22 - H211HllH.
In order to simplify the notation, we shall assume that no permutations are

required. This implies that 7 is an identity matrix, and consequently ITttkH = Hk.

We emphasize that this does not alter the theoretical results of later sections.
The factorization is usually terminated when all potential pivot elements in

Hk/Hll are smaller than a tolerance c2 maxi{hi,}. However, if all diagonal elements
of the Hessian are small or negative, the pivot tolerance is given by 2 hmi nl for a
preassigned positive constant hmin. Consequently, the pivot tolerance is defined as
c2 hk, where

hk = max{max{hi,},hnin}. (3.2)
i

The Cholesky factor is computed by rows, and the Schur complement is explic-
itly updated at each step of the factorization. Consequently, if the factorization is
terminated with nj < n, the elements of the final Schur complement are known.
Moreover, since we control the smallest acceptable pivot element, we have an upper
bound on the diagonal elements of the n2 x 712 matrix Hk/Hfii. These properties of
the factorization will prove important when computing directions of negative cur-
vature. It is important to iote that the dimensions of the matrices H1 1, 1112. 1121

and H22 depend on k.
The n x n1 matrix Z is defined to be

Z = (3.:)

where the matrix I is an nj x n1 identity matrix. The n x n2 matrix Y is defined
to be

Y= ( i-j ) (3.-1)

where we let y, denote the j-th column of Y.

Lemma 3.1. The following relations hold:

ZTHkZ = Hil,

ZTHkY = 0 and

yTIIkY = H2- H21 If'HI2.
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Proof. The result follows from substituting for Hk/H1l, Z and Y using (3.1), (3.3)
and (3.4). 1

Again, we emphasize that the dimensions of Z and Y depend on k. The following
lemma shows that the columns of then x n matrixM= ( Z Y ) form a basis for
.n.

Lemma 3.2. The n x n matrix M is nonsingular.

Proof. The result is immediate from the fact that det(M) = 1. 1

The following lemma relates the smallest eigenvaIue of Hk to the smallest eigen-
value of Hk/Hnl.

Lemma 3.3. If Hk is indefinite then

1
Amln.(Hk/HIl) :5 Amin(Hk) ''Amin(Uk/Hll).

III'112
Proof. It follows from Lemma 3.1 that Hk/H = yTHkY. Let u denote an eigen-
vector of unit length corresponding to the smallest eigenvalue of YTHkY. It follows
from (3.4) that uTyTyU > 1. Sylvester's law of inertia yields Amin(YTHky) < 0,
giving

Ty THkY~UTYTYU.
0 > Amin(YTHkY) = uTYTHkYu = uTyTYu

The proof of the second inequality is completed by noting that

0> uTYTyu > Ain(Hk)

and
uTyTyu < I1y1.

Using the Courant-Fischer minimax characterization of eigenvalues (see e.g.,
Wilkinson [Wil65, page 101]), it follows that the smallest eigenvalue of Hk is the
global minimum of the problem

minimize vTHkvvE " (3.5)
subject to vTv = 1.

Lemma 3.2 implies the existence of vectors vz and vy such that v = Zvz + Yv,.
Substituting for v in (3.5), and using the identity ZTHkY = 0 yields the problem

minimize vTZTHkZvz + vz YTHkYvyvzE 3 1,vyE"2 (3.6)
subject to vTZTZvz + 2vTZTYvy + vTyTyv" = 1.

By definition, ZTHkZ = H11 is positive definite, and it follows that the global
minimum of (3.6) is no smaller than the global minimum of the problem

minimize vTy THkYv (vz "j ,v tZi"2 (3.7)subject to vTzTZv, + 2VZyvy + V7'yv=1
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Since this is a problem where the gradient of the constraint is nonzero at all feasible
points, the constraint qualification always holds. Therefore, if vz and vy are global
minimizers, there must exist a Lagrange multiplier v such that the equations

V(ZTZvz + ZTYv ) = 0 (3.8a)

YTHkYVY + v(yTZvz + yTyvy) = 0 (3.8b)

vTZTZvz + 2vTZTyvr, + vTyTyV_ = 1 (3.8c)

are satisfied.
The global minimum of (3.6) is negative, so that the global minimum of (3.7) is

also negative. If v is zero, it follows from (3.8b) that the global minimum of (3.7)
is zero, which is a contradiction. Therefore, (3.8a) implies that vz is determined by
vy, with

Vz -" -(ZTZ)-IZTYv.

Using this value of v, and the definitions of Z and Y, problem (3.7) is equivalent
to the problem

minimize vTYTHk (39
,vYE3"2 Y ~YY(3.9)

subject to vTvy = 1.

The proof of the first inequality is completed by noting that the global minimum of
(3.9) is the smallest eigenvalue of yTHkY. I

We also require a result that relates the smallest eigenvalue of a symmetric
niatrix to the magnitude of its elements.

Lemma 3.4. If all elements of an n x n symmetric matrix A have absolute values
lcss than p, no eigenvalue of A has absolute value larger than pn.

Proof. This is an immediate consequence of the Gerschgorin circle theoren-see
e.g., Golub and Van Loan [GV83, page 200]. I

4. The Cholesky Factorization

At each iterate, a positive-definite principal minor of the llessian is factorized as
outlined in the previous section. Some standard results concerning the Choleskv
factorization are needed to derive uniform bounds on IIH 1 II. These results are
reviewed in this section. For a complete discussion of the Cholesky factorization,
see Iligham [lig87J.

Lemma 4.1. If a positive-definite n x n matrix A is factorized using the Cholksky
algorithm with complete pivoting, the elements of the Cholesky factor R havc tin

following properties:

rl I r,2 f j = , (,lla)
JrijJ < rii for j = 1,....,n, Z' = 1,... ,j - 1. h,~l )
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Proof. For any j > i the complete pivoting strategy yields

j-1

2 2
2rjj r3 -

1=i

from which (4.1a) follows. Since A is positive definite, it holds that rjj is positive,
and therefore ri > r?. I

Lemma 4.2. If R is the Cholesky factor of an n x n symmetric positive-definite
matrix obtained by complete pivoting, the elements of its inverse U have the following
properties.

Iul < 23-I for j= 1,...,n, i= 1,...,j- I

ujj = 1 for j= 1,...,n
rjj

uij =0 for j=I,...,n, i= j + ,...,n.

Proof. The matrix U satisfies the equation RU = I. The j-th column of this
equation gives

uij = 0 if i > j
1

Uji =-
rjj

1 '
U13= --- ri1ul if i<j.

rii 1= i+1

Lemma 4.1 implies that

I

Iu,I < Z ujl if i < j.

By induction, it follows that

IujI< if i<j.rjj

This bound on the element growth is usually unduly pessimistic. However, for
certain special matrices, substantial element growth may occur-see e.g., Higham
[Hig87, page 6]. What is important here is the existence of a bound. Such a bound
is needed in order to obtain a uniform bound on IlH-j 1j.

Lemma 4.3. There exists a positive constant co, such that for all k, IIHiII __ co.
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Proof. Since no pivot element smaller than ('hri is accepted in the Cholesky
factorization we have rn1 , > h Lemma 4.2 implies that

~ 2"

li Vrn- for i= 1 . n1  and j=1. ni.

The identity Hl = R7 IlR -T and Lemma 3.4 yield the desired result. I

5. Computation of the Search Direction

In the proposed method a search direction Pk is computed at the k-th iterate. The
vector Pk is defined in terms of two other vectors; a descent direction sk and a
direction of negative curvature dk.

5.1. Computation of the descent direction

The descent direction Sk satisfies the equation

Bksk = -gk, (5.1)

where

Bk H= 0 hI 0 (5.2)

and hk is defined by (3.2).
If n1 = n, then Bk = Hk and sk is the Newton direction. If 712 = n then

Bk = hmnl and sk is a multiple of the steepest-descent direction. (In general, ni
need not be equal to the number of positive eigenvalues of Hk. Fnr example, the
matrix I- eeT, where e denotes an n-vector with unit components, has n-I positive
oigenvalues, but nj = 0. However, the results reported in Section 8 include only one

case where n1 was zero.)
The vector Sk of (5.1) is computed by solving the triangular systems

Ru =-g 1  and R1 1 v =u, with s (-(I/=))
When sk is computed from these equations, the norms of sk and Ak are related in a
uniform way. The following lemma shows that Sk satisfies descent properties similar
to those required by McCormick [McC77].

Lemma 5.1. If sk is defined by (5. !) there exist positive constants cl and c2 indc-
pendent of k, such that for all k, it holds that

T-skgk > C1 lgkll and 119k1l >- C2liIk11-
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Proe'. The definition of Bk yields

1
IlgkI __ max{ H-'1,(I/hk)} 1ls l1

The bound on IIH-1II obtained from Lemma 4.3 implies the existence of c2 -.
The definition of sk yields

-Skgk > min{Amin(H-'),(1/hk)}j 112.

Since H11 is positive definite and symmetric, we may employ the identity
= 1 1

A"'n(t ')- I Am.(Hii) -IIHliiI"

The compactness of S(xo) and the smoothness of f ensure the existence of c. 1

5.2. Computation of the direction of negative curvature

The formula for dk is derived from a method for computing directions of negative
curvature in quadratic programming (see Forsgren et al. [FGM89]). If the variables
corresponding to 1122 are temporarily locked at their current values, a direction of
negative curvature is defined by releasing one or two of the locked variables. This
scheme corresponds to using either y, or yi ± y, as a direction of negative curvature
for a specific choice of i and j. The choice of i and j is determined by the values of
the elements of H1/Hl1. When the factorization of Hk is terminated, these elements
yTHkYI are known for I < i, j < n2, without explicitly computing the vectors yj

(see Lemma 3.1).
Let 77 E (0, 1) denote a preassigned constant and let p denote max, IYTHkyjI.

The vector dk is computed as follows.

if p < C2 hk/r7 then

dk = 0 (5.3a)

else if yjT hy, = -p for some i then

dk = ±y, (5.3b)

else if IyT1fkyjI = p for some i X j then

dk A ±-(y, - sgn(yTtlky1 )yJ) (5.3c)

end if

In each case, we choosc the sign of dk so that gTd < 0.
In the Cholesky algorithm, the pivot elements are chosen from the diagonal

of the Schur complement, and it follows that yTHkY, < (2hk for i 1. 712.

Consequently, if p > (2/k/Y then yT,7'11ky < p for all i and d is well defined.
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In order to obtain dk, it is necessary to compute y, or y, ± yj. I his is done by
solving an equation involving RI, and R12. For exarnple, the comnputation of y, + yj
requires the solution of the equation

Riu - I R12((, + e) with y, + y, 1 ) (51)

The following lemma shows that any nc;, zero dk is a diroction of negative cur-
vat u re.

Lemma 5.2. If dk is nonzero thcn

gYdk < 0 and djHkdtk -(1

11
Proof. In each case, the sign Gf dk is chosen so that /dk. :S 0. L et p denote
rnaxi, IY[rkY/I. If dk is given b)y (5.3b), then dllkk y -p. If is e

by (5.3c). then
d uT~l + YTlkJ) ISHTqdTllkdk - (" 1 0 -

2 k ±
where yfWHkI p. since y 7/ky, and kyj are both less than or equal to (2Ik.

it holds that ,'ilkdk _ 2hr. - p. The inequality p > ( 2hk Ik implies that in either
case

d T d _ (1 - )2hk
kllkdk <

as required. U

Finally. we relate the curvature along any nonzero dk to the smallest eigenvalue
of Ilk.

Lemma 5.3. If dk is nonzero, the ccxists a positive constalt c3 , irdcpcndcnt of k.
such that for all k

d" 'k -kd' k  < c , A i(Il k).

Proof. Iet p denote nlax,,j Iy llkYjI. If dk is nonzero, it follows froin the proof of

Lemma 5.2 that d[klkd < -(1 -j)p. lemma 3.4 implies that Amrin( Ilk!'1111) > -n
hence

(I 71A.1j.<_/1 - Ii
dfllkdlk

From Lemma 3.3 we have

(IA'.II (lk.  1 - A 1 k .
(lkk kk

dkdk -1 d, d k

Now (5.31), (5.3c) and (5.1) may be used to oh,,ain

< < d,. < II rVI < I + II,121 I !I l

-- V' <-- +nu i 1-n1il1ll
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The uniform boundedness of ldkl now follows from Lemma 4.3 and the assumptions
on f. I

The significance of this lemma is that a nonzero dk cannot be an arbitrarily poor
direction of negative curvature compared to the eigenvector corresponding to the
smallest eigenvalue of Hk (which is the best possible choice). The vector dk may be
zero even if dk is indefinite. However, when dk is zero, the following lemma gives a
bound on the indefiniteness of Hk.

Lemma 5.4. If dk = 0 then A,,in(Hk) > -nc 2 hk/7m.

Proof. If n2 = 0, then Hk is positive definite and Amin(Hk) > 0. Assume that

7n2 > 0. Since dk = 0, it holds that p < E'hk/77. This result, together with Lemma 3.4
implies that

nlE2 hk
A n(H k/H ll) _ - n 2p > - nc_ ,_

and it follows from Lemma 3.3 that

nE2hk,Ami.( Hk) > - n2h

5.3. Computation of the search direction

The search direction Pk is defined to be

Pk = Sk + Okdk, (5.5)

where the scalar 3k is defined as follows:

ifd k  0 andSTHk k > dTIIkda then

' d + Skd 2 2 T
Jck~k kk_+(5.6a

dsHdkdk d jHkd) , dkllkdk (5.6a)

else
= 0 (5.6b)

end if

Note that if n2 = 0 (i.e., if Ilk is sufficiently positive definite), Pk is the Newton
direction. The choice of k is important only if dk is nonzero. The particular choice
of fik given above is motivated by the following lemma, which also shows that if dk

is nonzero, Pk is also a direction of negative curvature.

Lemma 5.5. If dk is nonzero, then fk > 0 and pk"lkpk _ d'kkdk.
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Proof. If dk X 0 and /3 k = 0 then pTIIkP k = SHk'tsk < dTttkdk. If dk 5 0 and
13k $ 0 it follows from the definition of /3k that dTtldk < St1 k,'kS and the square
root in (5.6a) is well defined. In this case j3a is the unique positive number that
satisfies the quadratic equation (sk + /Ikdk)TIlk(sk + I3kdk) = dilk dk.

The following lemma shows that the norm of Pk is uniformly bounded.

Lemma 5.6. If Pk is defined by (5.5), [IPkII is uniformly bounded.

Proof. Lemma 5.1 and the compactness of S(xo) imply that IlskII is uniformly
bounded.

From the proof of Lemma 5.3 it follows that ItdkII is uniformly bounded. Lemma
5.2 guarantees that the denominator of 15.6a) is uniformly bounded away from zero.
Since f E C2 and the level set S(xo) is compact, it follows that 13k is uniformly
bounded, as required. I

One consequence of Lemma 5.6 is that if dk is nonzero, Pk cannot be an arbitrarily
poor direction of negative curvature.

6. Computation of the Iterates

Unlike the methods suggested by McCormick (McC771, Mor and Sorensen /MS79J
and Goldfarb [Gol80], if Hk is indefinite, the next iterate lies on a line emanating
from xk, instead of an arc. At a given iterate Xk, we will consider the case when an
initial estimate ak E [rrn,ariax] of the steplength along Pk is given. One way of

generating such an ok is discussed in Section 8.1.
We follow McCormick [McC77] and guarantee a sufficient decrease by comparing

f to a damped truncated Taylor series consisting of two or three terms. The resulting
algorithm may be viewed as an Armijo-type linesearch [Arm66], extended to the

indefinite case.
Let p and -1 denote preassigned constants such that /I E (0, -1) arid Y E (0, 1).

Given Xk and Ok E (rmin,omnax], the number ik is defined to be the smallest non-
negative integer i such that

(xk + -/'U kpk) f(xk) + /Ck kg kpk if dk 0; (6.1a)
JL2 I',2i 0t2

f(Xk + -YaokPk) <_ f(Xk) + Y '(kkgk'Pk + "2 PaHkPk if d . (6.11)

The next iterate Xk+I is defined as

xk+ = Xk + 2fk (kpk. (6.2)

A complete description of the modified Newton method is given in Algorith in 6. I.
In order to show that the algorithm is well defined, we present two lemmas, which
are slightly modified forms of a lemma given by Mo;r6 arid Sorensen [MS79. Lemma

2.21.
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Specify tolerances c, hm, an ma, 77, p and -y;
k - 0; converged *- false;
repeat

Evaluate fA, k and Hk;

Factorize Hk to obtain ni, n 2, R11, R 12 and HkI 111;
Compute sk and dk;
if(n, =nor dk=0) then

Pk - Sk;

else

Compute 3k;
Pk - Sk + kdk;

end if
converged ,- convergence-test;

if (not converged) then
Compute ak E [aminiamax];
Compute ik so that f(x + 7ikapk) is sufficiently decreased;
Xk+1 - xk + 11k akpk; k - k + 1;

end if
until converged;

Algorithm 6.1. A modified Newton method for unconstrained minimization

Lemma 6.1. If p E (0,-) is a given constant and (p is a continuously differentiable2

univariate function such that ,'(O) < 0, then there exists a positive scalar such
that

P(() < P(0) + pi'(O)K

for ( E (0,C).

Proof. The Taylor-series expansion for a positive ( yields

(() - P(0) - /IP'(0)X) ( 0 -)/'(O) + '(Ow) - P(0),

for some 0 E (0, 1), and it follows that

1
lim -((P) - (0) - UP'(0)() = (1 - p)p'(O) < 0.

(-0+ (

Hence, there exists a positive number c such that

fP(() - P(0) - I,(0)(< 0

for all ( E (0, ). I
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Lemma 6.2. If it E (0, ) is a given constant and 'p is a twic(-continuously d iffur-
entiable univariate function such that (p'(0) < 0 and (p"(0) < 0, thcn therc xists a
positive scalar C such that

,P(C) < (P(O) + L'(0) + it

for ( E (0,).

Proof. The Taylor-series expansion for a positive ( yields

I ( () - (P(0) - P'(0)( - /I2' "(o) = -/"(0) + 1( "(0) - "'"(0)).7 (()2 2 2

for some 0 C- (0, 1), and it follows that

1+ (2 '2(0) _ P _ 2',(0)!) = (0) < 0.
2 2

Hence, there exists a positive number ( such that

,P(() - 'P(0) - "''(0K - ,2' (). < 0.
2

for all ( E (0,'). The proof is completed by noting that

p'(0K < jl '(0K.-

|

We can now show that a sequence {xk}:' 0 generated by (6.2) is well defined.

Lemma 6.3. The sequence {xk}'= 0 is u,cll dcfirtcd.

Proof. First assume that dk is nonzero. It follows from Lemmas 5.2 and 5.5 that
9gPk < 0 and pTfkpk < 0. If we define (p(() = f(Xk + (Pk), we have 'p'(0) = y "'

and V"(0) = pTIkpk. Lemma 6.2 implies that given "k, there exists a nonnegative
integer ik such that (6.11)) holds.

Assume that dk is zero so that Pk = Sk. If sk 0, then (6.1a) holds for ik = 0.
If sk X 0, then Lemma 5.1 implies that gTks < 0. The application of Leuna 6.1
with p(() = f(xk + (Pk) implies that there exists an ik such that (6.1a) holds. I

It is of interest to study the behaviour of f(X) along Pk. It follows from Taylor-
series expansion that

f(xk + (kPk) = f(k) + (TOkP + 2Pkllklk + 'k (ik,k ,(k),

where the remainder terni is given by

rk(xk,pk,(k) = 2-PkT(V'2f(xk + Ok(kpk) - V'2f(xk))Pk (6.3)

for some Ok (0, 1).

In the following lemma, we establish the behaviour of the remainder term as k
tends to infinity and (k trends to zero.
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Lemma 6.4. If limk- (k = 0 then

lr rk(Xk,pk,Ck) =

k-o (

Proof. Using properties of norms and (6.3) we get

Ir'k(xk,Pk, Ck)I II~l[ 9 k2kr(XkPk < -- IlV f(xk + Ok VPk) - V2f(xk)ll.

Assumption A2 and Lemma 5.6 imply that jIXkjI and IjPkII are uniformly bounded.
Since limk_. Ck = 0 it follows that K kI is uniformly bounded. Therefore, there exists
a compact set C such that Xk E C and Xk + Ok(kPk E C for all k. Since C is compact
and f is twice continuously differentiable, it follows that IIV2f 1 : C - R is uniformly
continuous. Hence, for all e > 0 there exists a 6 > 0 such that I[V2f(x)- V 2f(y)Jf < e
for all x, y E C such that lix - Yll < 6. Since limk-c (k = 0 and IlPkI is uniformly
bounded, for each 6 there exists a K such that II0k kPkI < S for all k > R. I

If an infinite sequence {Xk}k-=0 is generated, the following lemma shows that
there are only a finite number of iterates where a direction of negative curvature is
computed.

Lemma 6.5. For any sequence {xk}k=o there must exist a finite K such that dk = 0
for all k > K.

Proof. The sequence {f(xk)}k=0 is decreasing and Assumptions Al and A2 imply
that this sequence is bounded from below, and it follows that {f(xk)}k=o converges
to a limit f. Assume that there exists an infinite subsequence {XklkEJ such that
dk -A 0 for all k E J. From the equation

f - f(X0) = Z(f(Xk+l) - f(Xk))
k=O

and the fact that each term in this sum is nonpositive, it follows that

f - f(xo) < Z(f(xk+l) - f(xk)).
kEJ

From Lemmas 5.2 and 5.5 we obtain

ptkk < dTllkdk < (1)hk
77

for all k E J. The inequalities gfTPk <- 0 and ak a amin imply that

- -2ik 2 n(1 - 17) 2 hmin

f-f (xO) < 277
kEJ
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Since f is finite this inequality must imply that 1k - O as k - x), for k c J.
Further, from the definition of ik

2 pk2tkpk"

The Taylor-series expansion yields

rk(Xk,pk,Yik- Ok) >-(1 - it) g (1 - /12)pTlp,

.2(ik-l)C
2  > - klok Wk 2 L)Plkk, Y kok 2"

Using the fact that 9Tpk < 0, it follows from Lemmas 5.2 and 5.5 that

rk(Xk,pkik-ak) (1 -- I)(1 - )2hin (6.4)
y2(zk- 1)O2 271

Taking the limit in (6.4) noting that ak <_ ,1inx it follows from Lemma 6.A that

0 > ( I - it')( t - -q )c 2h m i nl

271

which is a contradiction. Therefore, there exists a finite I" such that dk is zero for
all k > K. I

7. Global Convergence Properties

Using the established lemmas we can derive the following theorem concerning the
limit points of the sequence {Xk}k_ 0 .

Theorem 7.1. If an infinite scquence {xk}ko is generated as defined in (6.2), any
limit point x satisfies

Vf(C) = 0 and An1j.n(V 2f()) > -2
77

where I =max { nx, {(V 2f(:r )) ... h,, }

Proof. Without loss of generality, it may he assumed that the sequence {X k}b__
converges to some point x. Lemma 6.5 implies that there exists a I" such that
dk = 0 for all k > It', so that Pk = qk for k > It'. Therefore, Lemma 5.-4 and the
continuity of V 2f imply that

Ami,,(V 2f(x)) n - h

11

Assume that there exists an I such that ik < I for all k > K. It follows froni

Lemma 5.1 that

f(Xk+l} - f( 'C,) < /1'Y .kJk < -W) I( "iniil5k !'
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Since f(i) is finite, it follows that Vf(i) = 0.
If the integers ik are not bounded above, then it may be assumed without loss

of generality that ik - o as k -- o. From the definition of ik it follows that

f(xk + -fiy-l, kss) - f(Xk) > A-fkag~* sk

for all k > K. The Taylor-series expansion yields

7-1Ta k rk(Xk0Sk,7ik_-lak) > - )gT

2 Skl k7 + .tik-lak -(-

Using Lemma 5.1 it follows that

SY k T + > ( -.

2 Skk~ 74_ k >~

Taking the limit and using Lemmas 5.6 and 6.4 we have Vf(i) = 0 as required. I

As stated in the following corollary, a consequence of this theorem is that if two
consequent iterates are identical, a limit point is found, since all subsequent iterates
are identical.

Corollary 7.1. If two consecutive iteMtes Xk and Xk+1 are identical, the point Xk
satisfies

Vf(xk) = 0 and Amj(V 2f(xk))> -2 hk
17

The assumptions made are not sufficient to guarantee that the sequence {Xk}k= 0
is convergent. Some additional conditions are needed to guarantee that a generated
sequence has a unique limit point. As observed by Mor6 and Sorensen [MS79], if
we make the additional assumption that there are only a finite number of points in
S(xo) where the gradient vanishes, the following result may be used.

Lemma 7.1. (Ortega and Rheinboldt [OR701) Suppose that a generated se-
quence {xj}I 00= satisfies

lim (Xk+l - xk) = 0 and lim Vf(Xk) = 0.
k--oo k--oo

Furthermore, suppose that the level set S(xo) is compact. If there are only a finite
number of points in S(xo) where the gradient vanishes, then there exists a point 2i
such that

lin Xk and Vf(x) = 0.
k 00o

Proof. See Ortega and Rheinboldt [OR70, Theorem 14.1.51. I

In the method proposed in this paper, it follows from Lemma 6.5 that there is
a K such that Pk = sk for k > K. From Lemma 5.1 we get limk-cosk = 0. Using
Lemma 7.1 the following corollary may be established.
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Corollary 7.2. If there are only a finite number of points in S(xo) where the gra-
dient vanishes, the sequence {xk}%=o converges to a point x satisfying

Vf(x) = 0 and Amin(V2f(.)) _ "2
71

where h = max{maxi{(V 2f(i)),i),hm.,.1. i

8. Test Problems and Numerical Results

A Fortran version of the algorithm was run on two types of test problems: nonlin-
ear least-squares problems and barrier problems. The computer used was a DEC
VAXstation I, with relative machine precision e, 1.39 x 10- 17 .

8.1. Parameter values

Various values of the parameters discussed in Section 2.2 were investigated. The
results presented here were obtained with the following values:

f 10-6 (specifies smallest acceptable pivot element)
h"ji 10 - 3  (smallest acceptable maximum diagonal Hlpmpnt r I, ll.)
r 10- 3  (tolerance for the acceptance of dk)
avii 10- 10 (minimum step in the linesearch)
omax 1015 (maximum step in the linesearch)
it 0.1 (damping factor used in the truncated Taylor polynonial)
'Y 0.5 (parameter for the backtracking).

The value of c is a tradeoff between a small value that gives the Newton search
direction when Hk is positive definite, and a value large enough to ensure that H1
is well-conditioned. Theoretically, a very small value of c is preferred, since this is
more likely to give limit points that satisfy the first- and second-order necessary
conditions (see Theorem 7.1). However, small values of c may give ill-conditioned
Cholesky factors which may cause inaccurate search directions. Our experiments
indicate that the overall performance of the method is not sensitive to the precise
value of c.

Given the value of E, h,,,in is selected to ensure that the minimum pivot element
is always greater than the machine precision. In the experiments presented here,
this value of hmin affected only two iterates.

The value of j was varied by several orders of magnitude from the chosen value.
without changing the overall performance. The value selected helps to avoid com-
puting directions of negative curvature when the elements of the Schur coilpleimenlt
are all small in magnitude.

The steplength Ok is computed using the linesearch procedure of Gill ct al.
[GMSW79] with default parameter settings. At each step of the linesearch both the
function and gradient are evaluated. The value of it above was chosen to ensure that
ik = 0 is accepted in most cases. Since the value of ik in (6.2) differed from zero
in only two cases, we deduce that the choice of -t is not crucial. The values of 0 ,,i,
and amax were designed to ensure that the steplength produced by ti, onesearcni
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is accepted in almost all cases. In practice, a sensible choice of a.., can improve
efficiency.

The efficiency of the linesearch is affected by the initial estimate of a. Whenever
dk was zero, the choice of a = 1 was found to be adequate. However, the unit step
tended to overestimate the accepted step when dk was nonzero. To allow for this,
an initial step of 0.01 was used in these cases.

8.2. Least-squares test problems

The least-squares test problems comprise a suite of 45 problems, given by Fra-
ley [Fra88]. Many of these problems are known to be hard to solve, in spite of their
small size. A summary of results obtained on these problems when applying dif-
ferent least-squares methods and methods for unconstrained minimization is given
in Fraley [Fra88). Our numbering of the problems is the same as in Fraley's study.
The formulations for problems 1-35c are given by Mor6 et al. [MGH81], problems
36a-36d are presented in Fraley [Fra88], problems 37-38 are given by Salane [Sa87],
problems 39a-41g are from McKeown [McK75], problems 42a-43f originate from de
Villiers and Glasser [dVG81] and problems 44a-45e are from Dennis et al. [DGV85].

We accept Xk as a solution of a least-squares problem if one of the following two
conditions are met:

C1. dk= 0

or

dk = 0
C2. f(Xk-1) - f(xk) < Efx(1 + If(xk))

IJxk - Xk-1l1 IC 1 + IJXkl)
J19k]] <5 z(fm(l -t-If(xk)l).

The first condition is intended to accept points that approximately satisfy the
first- and second-order necessary conditions for optimality. The second condition is
intended to test when the sequence {Xk}k0 has converged. For a detailed discussion
of convergence criteria for unconstrained optimization, see Gill et al. [GMW81,
Chapter 8].

In some problems it was not possible to evaluate the function at all tuial points.
In these cases, the trial step was repeatedly decreased by a factor -Y (-Y = 0.5) until f
could be evaluated. This additional backtracking was necessary for problems 42a and
43d because of an implicit nonnegativity constraint on one variable; and for problem
19 because of overflow during the calculation of the objective function. Similarly,
the initial step at the starting point of problem 11 was repeatedly decreased until
the Hessian and gradient were not numerically zero. These trial function evaluations
are included in the number of function evaluations shown.

In problems 2, 36a, 36b and 36d, the algorithm failed to converge within the
permitted number of iterations. In all cases, this non-convergence is a consequence
of the Hessian being very ill-conditioned at the solution. Although the algorithm did
not converge in these cases, the objective value was close to the optimal objective
value.
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nr name n n1  A IIgk~l -(HjI) k nf con,, #n+ #d.

I rose 2 2 6.317050E-32 6.OE-15 2.E+03 22 29 y 0 0 0
2 froth 2 2 2.449213E+01 1.7E-07 1.E+03 7 11 y 2 0 0
3 poulbe 2 1 2.837351E-05 1.1E+01 1.E+0O 600 2079 n 5 593 1
4 brownbs 2 1 3.851860E-34 2.8E-11 1.E+00 4 5 y 1 3 0
5 beale 2 2 1.007290E-23 3.8E-12 1.E+02 8 18 y 0 3 3
6 jensam 2 2 6.218109E+01 2.OE-13 8.E+00 10 11 y 0 0 0

7 helix 3 3 2.943716E-35 2.SE-17 3.E+02 14 25 y 0 S S
8 bard 3 3 4.107439E-03 4.4E-16 2.E+03 14 21 y 0 1 1

9 gauss 3 3 5,639664E-09 4.9E-11 5.E+01 2 3 y 0 0 0
10 meyer 3 2 2.661418E+04 4.IE+01 6.E+07 24 74 n 4 23 2
11 gulf 3 3 8.612303E-20 2 OE-10 1.E+10 151 251 y 0 8 7
12 box 3 3 8.939108E-30 1.3E-15 7.E+03 14 19 y 0 1 0

13 sing 4 4 1.30055GE-13 1.8E-09 1.E+08 21 22 y 0 0 0
14 wood 4 4 0.OOOOOOE+00 O.OE+O0 5.E+02 39 52 y 0 1 1
15 kovosb 4 4 1.537528E-04 3.6E-11 2.E+03 9 23 y 0 4 4
16 brownden 4 4 4.291110E+04 1.6E-10 6.E+01 8 9 y 0 0 0
17 osbi 5 5 2.732447E-05 3.6E-09 1.E+09 65 147 y 0 28 28
18 exp6 6 5 2.8278255-03 1.9E-09 1.E+05 48 136 y 1 46 37
19 osb2 11 11 2.006887E-02 2.2E-12 4.E+03 16 37 y 0 6 6
20a uatson06 6 6 1.14383SE-03 5.2E-13 2.E+04 12 13 y 0 0 0
20b watson09 9 9 6.998801E-07 7.5E-15 2.E+08 13 14 y 0 0 0
20c uatson12 12 11 4.178499E-09 6.4E-08 8.E+09 31 38 y 3 32 1
20d watson20 20 13 6.886510E-08 1.8E-08 2.E+11 53 107 y 3 54 0
21a rosex 10 10 3.158525E-31 1.3E-14 2.E+03 22 29 y 0 0 0
21b rosex2 20 20 6.317050E-31 1.9E-14 2.E+03 22 29 y 0 0 0
22a singx 12 12 3.901678E-13 3.2E-09 1.E+08 21 22 y 0 0 0
22b singx2 20 20 1.284503E-13 1.2E-09 2.E+08 22 23 y 0 0 0

23a peni4 4 4 1.124989E-05 7.5E-11 5.E+03 34 43 y 0 0 0
23b penilO 10 10 3.543826E-05 1.3E-12 1.E+03 36 44 y 0 0 0
24a penii4 4 4 4.688147E-06 I.I-10 2.E+06 110 158 y 0 0 0
24b peniilO 10 10 1.468303E-04 I.OE-09 2.E+06 93 132 y 0 0 0

25a vardial 10 10 8.680345E-27 2.6E-12 1.E+02 14 15 y 0 0 0
2Sb vardin2 20 20 0.000000£+00 0.OE+00 4.E+O 18 19 y 0 0 0
26a trig 10 10 1.721941E-24 1.3E-12 8.E+00 7 11 y 0 1 1
26b trig2 20 20 3.074585E-28 1.2E-14 4.E+00 11 22 y 0 5 5
27a brownal1 10 10 2.651544E-28 2.3E-14 2.E+03 8 9 y 0 0 0
27b brownal2 20 20 2.462302E-18 3.3E-09 1.E+04 9 10 y 0 0 n

28a discbvl 10 10 9.287387E-25 1.75-13 9.E+01 3 4 y 0 0 0
28b discbv2 20 20 1.182787E-25 1.7E-14 7.E+02 3 4 y 0 0 0
29a disciel 10 10 1.997048E-22 2.5E-11 1.E+00 3 4 y 0 0 0
29b discie2 20 20 3.293268E-22 3.2E-11 1.E+00 3 4 y 0 0 0
30a broytril 10 10 8.955574E-33 7.6E-16 2.E+00 6 7 y 0 0 0

30b broytri2 20 20 2.051115E-32 l.iE-15 2.E+00 6 7 y 0 0 0

31a broybanl 10 10 6.032100E-27 5.2E-13 3.E+00 8 9 y 0 0 0
31b broyban2 20 20 6.067580E-27 5.2E-13 3.E+00 8 9 y 0 0 0
32 lin 10 10 5.000000E+00 9.7E-16 I.5+00 1 2 y 0 0 0
33 lint 10 1 2.317073E+00 2.8E-11 1.E+00 1 3 y 1 2 0
34 linO 10 1 3.067568E+00 4.0E-11 1.E+00 1 3 y 1 2 0
35a chebyqul 8 8 1.758437E-03 5.45-15 2.E+01 19 34 y 0 11 11

Table 8.1: Results for least-squares test problems I 35a.
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nr name n n, k I)kIl -(HI ) k nJ cony #n+ #du

35b chebyqu2 9 9 9.668790E-22 8.SE-11 2.E+02 34 84 y 0 27 27
35c chebyqu3 10 10 3.251977E-03 6.4E-11 2.E+02 24 46 y 0 16 16
36a xsqrtli 4 4 7.839519E-11 5.SE-06 6.E+10 600 885 n 5 0 0
36b =sqrt2i 9 7 2.066297E-09 1.8E-05 2,E+08 600 2175 n 5 421 361

36c msqrt3i 9 8 6.499547E-16 2.1E-08 4.E+08 28 44 n 4 2 1
36d isqrt4i 9 9 2.10516SE-09 1.6E-06 5.E+10 600 2154 n 5 415 361
37 hanl 2 2 1.043501E+02 1.5E-12 3.E+04 5 9 y 0 1 0
38 hazi2 3 3 1.983216E+01 2.7E-10 1.E+06 6 11 y 0 0 0
39a ackla 2 2 9.180060E-02 1.OE-17 7.E+00 3 4 y 0 0 0
39b ncklb 2 2 9.180060E-02 7.7E-12 5.E+00 3 4 y 0 0 0
39c acklc 2 2 9.180060E-02 1.3E-13 2.E+00 3 4 y 0 0 0
39d mckld 2 2 9.180060E-02 2.2E-17 2.E+00 5 6 y 0 0 0
39e ackle 2 2 9.180060E-02 1.OE-14 6.E+00 7 8 y 0 0 0
39f acklf 2 2 9.180060E-02 3.9E-18 7.E+00 10 11 y 0 0 0
39g nckIg 2 2 9.180060E-02 8.8E-10 7.E+00 12 13 y 0 0 0
40a ack2a 3 3 3.982776E-01 4.2E-15 2.E+O1 3 4 y 0 0 0

40b ack2b 3 3 3.982776E-01 1.2E-10 8.E+00 3 4 y 0 0 0
40c mck2c 3 3 3.982776E-01 6.6E-13 2.E+00 4 5 y 0 0 0
404 ack2d 3 3 3.982776E-01 1.OE-16 4.E+00 5 6 y 0 0 0

40e *ck2e 3 3 3.982776E-01 6.7E-17 1.E+01 7 8 y 0 0 0
40f uck2f 3 3 3.982776E-01 5.4E-12 2.E+01 9 10 y 0 0 0
40g mck2g 3 3 3.982776E-01 1.4E-15 2.E+01 12 13 y 0 0 0

41a ack3a 5 5 5.000001E-01 8.3E-10 4.E+00 2 3 y 0 0 0
41b mck3b 5 5 5.000001E-01 6.7E-14 3.E+00 3 4 y 0 0 0
41c mck3c 5 5 5.O00001E-01 4.8E-12 3.E+00 7 8 y 0 0 0
41d mck3d 5 5 S.O00001E01 9.6E-15 2.E+00 8 9 y 0 0 0
41e mck3e 5 5 S.O00001E-01 3.7E-10 2.E+00 10 11 y 0 0 0
41f uck3f 5 5 5.000001E-01 1.7E-11 3.E+00 13 14 y 0 0 0
41g ack3g 5 5 5.000001E-01 2.1E-12 3.E+00 16 17 y 0 0 0
42a devgla 4 4 3.593754E-28 7.3E-12 5.E+04 16 27 y 0 2 2
42b devglb 4 4 2.485558E-23 1.2E-09 5.E+04 28 51 y 0 6 6
42c devglc 4 4 2.223602E-28 5.3E-12 5.E+04 21 43 y 0 5 5
42d devgid 4 4 1.910276E-28 7.0E-12 5.E+04 19 26 y 0 2 2
43a devg2a 5 5 1.390367E-29 1.4E-12 8.E+06 17 26 y 0 3 3

43b devg2b 5 5 1.352306E-25 9.4E-11 8.E+06 16 29 y 0 4 4
43c devg2c 5 5 5.445605E-29 5.4E-12 8.E+06 13 27 y 0 6 5
43d devg2d 5 5 9.207747E-22 2.1E-09 8.E+06 29 50 y 0 5 4
43e devg2e 5 5 1.059680E-21 2.8E-09 8.E+06 17 30 y 0 5 S
43f devg2f 5 5 3.254051E-30 2.8E-13 8.E+06 18 32 y 0 4 4
44a dgv6a 6 6 3.982829E-24 2.3E-11 7.E+06 38 121 y 0 29 29
44b dgv6b 6 6 1.255706E-31 1.6E-14 4.E+02 12 26 y 0 4 4

44c dgv6c 6 6 8.742151E-25 8.2E-10 4.E+11 392 833 y 0 385 83
44d dgv6d 6 6 3.416587E-26 1.2E-10 2.E+10 316 764 y 0 306 126

44e dgv6e 6 6 1.306575E-30 1.1E-12 1.E+08 175 516 y 0 164 163
45a dgv8a 8 8 5.542109E-26 1.4E-11 7.E+06 39 116 y 0 31 31
45b dgv8b 8 8 3.710801E-33 6.7E-16 2.E+03 16 36 y 0 7 7
45c dgv8c 8 8 1.234906E-30 1.3E-11 9.E+11 484 1003 y 0 480 134
45d dgv8d 8 8 1.970398E-30 3.4E-12 4.E+10 480 1053 y 0 470 174

45. dgv8 e 8 8 3.968786E-31 6.OE-13 4.E+08 349 953 y 0 339 338

Table 8.2: Results for least-squares test problems 356-15c.
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nr name I
1  

10
- 2  

le
"  

10
4  

nr name 10
-  

10
- 2  

10
-  

10
-4

1 rose 5 12 16 17 35b chebyqu2 20 29 29 31

2 froth 2 3 4 4 3Sc chebyqu3 11 14 19 21

3 poulbs 1 4 8 235 36a msqrtli 2 4 6 10

4 browntbs 3 3 3 3 36b msqrt2i 2 4 6 10

5 beale 2 3 4 5 36c msqrt3i 2 3 5 7

6 jensam 2 3 5 6 36d msqrt4i 2 4 6 10

7 helix 4 6 7 8 37 hant 1 2 2 3

8 bard 2 4 6 8 38 han2 1 2 3 3

9 gauss 1 1 1 1 39a mckla 1 1 1 1

10 meyer 1 2 2 3 39b mckib 1 1 1 2

11 gulf 1 1 3 6 39c mcklc 1 1 1 2

12 box 2 3 5 7 39d mckld 2 2 3 3

13 sing 2 3 5 6 39e mckle 2 3 4 5

14 wood 1 3 4 26 39f mcklf 2 3 5 6

15 kouosb 3 5 6 7 
3
9g mcklg 2 3 5 6

16 brownden 2 4 5 5 
4
0a mck2a 1 1 1 1

17 osbl 12 28 32 37 40b mck2b 1 1 2 2

18 exp6 10 2. 27 32 40c mck2c 1 2 2 2

19 osb2 7 9 11 12 40d mck2d 1 2 2 3

20a watson06 1 2 5 7 40e mck2e 2 3 4 4

20b watson09 1 2 5 8 40f mck2f 2 3 5 6

20c watsonl2 1 3 4 6 40g mck2g 2 3 5 6

20d watson20 4 7 12 17 41a mck3a 1 1 1 1

21a rosex 5 12 16 17 41b mck3b 1 1 1 1

21b rosex2 5 12 16 17 41c mck3c 2 3 4 5

22a singx 2 3 5 6 41d mck3d 1 3 4 5

22b singx2 2 3 5 6 41e mck3e 2 4 5 6

23a peni4 2 3 5 6 41f mck3f 2 3 5 6

23b penilO 2 3 5 6 41g mck3g 2 3 5 6

24a penii4 2 2 3 4 42a devgla 8 10 12 12

24b peniilO 2 3 4 5 42b devglb 20 23 24 25

25a vardiml 2 3 5 6 42c deybic 14 16 17 18

25b vardim2 2 3 5 6 42d devgId 11 14 14 15

26a trig 3 4 4 5 43a devg2a 2 3 5 6

26b trig2 6 7 8 8 43b devg2b 3 5 7 9

27a brounall 1 1 1 1 43c devg2c 1 4 7 7

27b brounal2 I I I I 43d devg2d 4 6 8 10

28a discbvl 1 1 1 2 43e devg2e 2 4 7 9

28b discbv2 1 1 1 2 43f devg2f 3 6 8 10

29& disciel 1 1 2 2 44a dgv6a 11 22 14O 33

29b discie2 1 1 2 2 44b dgv6b 3 6 8 9

30a broytril 1 2 3 3 44c dgv6c 1 5 29 119

30b broytri2 1 2 3 3 44d dgv6d 1 3 24 97

31a broybanl 2 3 4 5 44e dgv6e 1 3 14 52

31b broyban2 2 3 4 5 45a dgv8a 11 22 29 33

32 fin I I I I 45b dgv8b 2 5 9 12

33 lini I 1 1 1 4Sc dgv8c 6 9 27 99

34 linO I i I 45d dgv8d 3 6 20 89

35a chebyqul 10 15 is 16 45e dgv8e 3 4 14 57

Table S.3: N uflber of iterations required to reduce (f(Xk) f(X* ))/(f(') - fk, *))

below four different tolerances.
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Ill-conditioning was also responsible for the failure in problems 10 and 36c. In
these cases, the algorithm terminated because of a failure in the linesearch. Again,

the objective value has been reduced significantly. In problem 36c the algorithm
terminated at a point very close to the solution. In problem 10 the Hessian at the
final iterate is positive definite but very ill-conditioned.

The results of the computer runs are summarized in Tables 8.1 and 8.2. The
column headings have the following meaning:

nr Problem number.

name Problem name.
n Number of variables.
711 Dimension of H11 at the final iterate xk.

fk Value of the objective function the final iterate xk.

11.9k1 Norm of the gradient at the final iterate xk.
r,(Hl1) Estimdte of the condition number of the final H11.
k Number of iterations.
nf Number of function evaluations.
cony Convergence information.

y 0 Convergence criteria C1 satisfied with n2 = 0.
y 1 Convergence criteria C1 satisfied with n2 > 0.
y 2 Convergence criteria C2 satisfied with n2 = 0.
y 3 Convergence criteria C2 satisfied with n2 > 0.
n 4 Nonconvergent due to failure in linesearch.
* 5 Nonconvergent due to too many iterations (> 600).

#n +  Number of iterates where n2 was positive.
#dU Number of iterates where d was used.

Our experience from working on these problems is th;.t it is possible to reduce
the value of the objective function significantly in a relatively small number of

iterations, as illustrated in Table 8.3. However, stringent convergence criteria such

as those used here may not always be achievable if the Hessian is ifl-conditioned at
the solution.

8.3. Barrier test problems

The test problems with a general objective form originate from the barrier function
approach of Resende et al. [RK R89] for solving 0-1 integer programming problems.
The aim of this approach is to find a point x* with all components ± I in the set F,
where F is defined to be

A ~ 2b - Ae +e

F I , (8.1)

I e

for an m x n matrix A and an n-vector b. We consider the case where all elements
of A and b are integers. The vector e denotes a suitably dimensioned vector with

unit components.
If the composite matrix and vector associated with the inequalities of (8.1) are

denoted by A and 6, we may write F = {x : Ax < }.
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This integer feasibility problem is converted into a smooth minimization problem.
The function to be minimized is the barrier function f defined by

1 1 m+2n
f( ) = 2 ln(n - xTx) -m + 2n ln(eT(6 - Ax))m ni=j

(see Resende et al. [RKR89]). This barrier function does not satisfy the assumptions
of Section 2.1, since the function is only defined for x such that Ax < 6. Moreover, as
is shown in the appendix. the barrier function tends to minus infinity for a sequence
converging to a point with all components ±1. Nevertheless, these functions are
useful as test problems because they have many local minimizers and exhibit many
directions of negative curvature. (Moreover, it was also of interest to see if the
algorithm was able to locate a point in F with all components ±1.)

Three different test problems were used, and for each of them the set of points
in F with all components ±1 consists of only one point, x*.
Data for barrier test problem 1:

-2 -1 -1 0 0 0-
-1 0 0 -2 -1 0 -2

A= 0 -1 0 -1 b= -2

0 0 -2 0 -1 -1 -1
3 2 3 4 2 2 1

a) ro = ( -0.90 0.76 -0.76 0.64 0.20 -0.20 )T

b) o = ( -0.86 0.64 -0,64 0.46 -0,20 0.20 T

* = ( -1 1 -1 1 1 -1 )T

Data for barrier test problem 2:

1 2 4 2~ b ()A= -4 -3 -4 -2 )' -8 )'

a) 1o= ( 0.90 -0.10 0.45 -0.95 ) ,

b) ro = ( 0.88 0.08 0.34 -0.94

=( 1 -1 1 -1 )T

Data for barrier test )roblem 3:

A = 2 4 4 8 , = 13 ,

-4 -8 - 2 .' -9

a) zo = ( -0.40 0.80 0.20 -0.99 )T,

h) zo = ( -0.34 0.78 0.12 -0.99

-! II I
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name n " fA 119kil ,(H 2 ) k nf conv #%+ #d.

46a barlogla 6 6 -1.841628E400 1.39+07 3.E+00 18 22 y 6 19 19

46b barloglb 6 6 7. 6269E6-01 2.8-12 3.E+01 7 11 Y 0 3 3

47a barlog2a 4 3 -1.1226216+00 9.OE+06 2.E+00 16 17 y 6 17 17
47" barlog2b 4 4 6.8057156-01 3.66-14 1.6+01 7 8 y 0 1 1
48a barlog3a 4 3 -1.996616£+00 6.0E406 3.E+00 16 17 y 6 17 17
48b barlog3b 4 4 1.433882E-01 8.96-15 8.9+00 10 14 y 0 2 2
49a barla 6 5 1.618634E-01 2.3E+06 3.6+00 17 21 y 6 18 18

49b baulb 6 6 2.144056E+00 7.0E-12 3.E+01 7 11 T 0 3 3

SO& bar2a 4 3 3.7711486-01 8.2E406 2.9+00 14 15 y 6 16 1s
SOb bar2b 4 4 1.787069£+00 4.8E-13 1.6+01 7 8 y 0 1 1
Sla bar3a 4 3 1.4355016E-01 1.1E+06 2.E+00 15 16 y 6 16 16

61b bar3b 4 4 1.154178E+00 1.1E-11 8.6+00 10 13 y 0 3 3

Table 8.4: Results for barrier test problems

For each of the three test problems, two starting points were used. Problems
46a, 47a and 48a correspond to starting points for which the sequence {xk}%%_ con-
verged to x*. Problems 46b,47b and 48b correspond to starting points for which the
sequence converged to a local minimizer of the barrier function.

Problems 49, 50 and 51 are similar to problems 46, 47 and 48, except that the
objective function is the argum' at of the logarithmic barrier function, i.e.,

(n - xTx)1/2

S" m+ 2 n eT(b - AX))I/(m+
2 n)

For the same starting points, the same final points were reached in approximately
the same number of iterations.

The barrier problems are not truly unconstrained, since the objective function
is only defined for x such that Ax < b. To allow for this, the iteration was modified
so that on,. was made subject to being no greater than 99.99% of the step to the
boundary of F. If dk was zero, the unit initial steplength was chosen, and when dk
was nonzero, a trial value of 0.8 a..x was used. The trial step was accepted if the
directional derivative was still negative. Otherwise, the same linesearch as used for
the least-squares test problems was used.

The following criterion was used to decide when a point in F with all components

±1 had been reached,
C3. max,{1 -IeTXki} < l0,/

The results for the barrier test problems are presented in Table 8.4. The column
headings are the same as for the least-squares test problem, and the only difference
is that convergence criteria C3 is denoted by "y 6" in the cony column.

8.4. Practical behaviour of the computed directions

In Section 5 of this paper theoretical properties of the computed directions sk, d and

Pk are established. It is shown in Lemma 5.3 that the ratio between the curvature
along the direction of negative curvature, dk, and the smallest eigenvalue of Hk is
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uniformly bounded away from zero. Lemmas 5.5 and 5.6 imply that whenever dk
is nonzero, the ratio between the curvature along Pk and the smallest eigenvalue of
Hk is also uniformly bounded away from zero.

In order to measure the magnitude of the curvature along dk, it is compared
to the smallest eigenvalue of Hk. Figure 8.1 shows the ratio between the curvature
along dk and the smallest eigenvalue of Hk for those iterates of the least-squares
problems where dk was nonzero. Figure 8.2 shows the corresponding data for the
barrier problems. If 10% of the best possible curvature is regarded as "good", we
see that this "good" curvature is computed in 95% of the cases for the least-squares
problems and in 98% of the cases for the barrier problems.

Ideally, if dk is nonzero, Pk should be both a nontrivial direction of negative
curvature and a descent direction that is not too orthogonal to the negative gradient.
Unfortunately, a direction that simultaneously has both these properties may not
exist. In Figures 8.3 and 8.4 we give the ratio between the curvature along Pk and
the curvature along dk for iterates for which dk was nonzero. Since dk is intended to
be a good direction of negative curvature, this ratio gives an idea of how much of the
best possible curvature is achieved along pk. The data for the least-squares problems
is given in Figure 8.3; data for the barrier problems is given in Figure 8.4. Note that
for both classes of problem, the ratio is close to one in most cases. Moreover, a ratio
greater than one is possible if (IPkil < j1dki. A ratio greater than 0.1 is achieved
in 98% of the cases for the least-squares pioblems and in 99% of the cases for the
barrier problems.

The direction sk is intended to be a good descent direction. In order to inves-
tigate whether this property is inherited by Pk, the ratio of the cosine between Sk
and 9A and the cosine between Pk and Sk was measured. These ratios are given in
Figure 8.5 for the least-squares problems and in Figure 8.6 for the barrier problems.
In general, this ratio is not as close to one as the curvature ratios. However, a ratio
greater than 0.1 is obtained in 86% of the cases for the least-squares problems and
in 93% of the cases for the barrier problems. We believe that the main reason for
this ratio not bing as close to one as the other two ratios, is that II14I1 tends to zero
as the solution is approached, but a nonzero 1jd1 will be of order one. Therefore,
because of the way Pk is constructed, dk will usually dominate sk so that pk. , dk.

It is noticeable that the barrier ratios seem better than the least-squares ratios.
This is probably due to the fact that even though both problem classes contain
highly nonlinear problems, the condition number of 11, is generally smaller for the
barrier problems.
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40%

20%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.1: Least-squares problems: Ratio of the curvature along dk to the smallest
eigenvalue of the Hessian. Percentage out of 2013 observations.

60%

40%

20%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.2: Barrier problems: Ratio of the curvature along dk to the smallest eigen-
value of the Hessian. Percentage out of 115 observations.
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40%

20%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.3: Least-squares problems: Ratio of the curvature along Pk to the curvature
along dk. Percentage out of 2013 observations.
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20%

= = F ' ===9
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.4: Barrier problems: Ratio of the curvature along Pk to the curvat ure along
dk. Percentage out of 115 observations.
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20%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.5: Least-squares problems: Ratio of the cosine between Pk and 9k to the
cosine between sk and gk. Percentage out of 2013 observations.

20%-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.6: Barrier problems: Ratio of the cosine between Pk and k to the cosine
between sk and gk. Percentage out of 115 observations.
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9. Discussion

This report describes a modified Newton method for unconstrained minimization.
At each iteration a positive-definite portion of the Hessian is factorized using the
Cholesky algorithm. A descent direction is computed if the gradient is nonzero, and
a direction of negative curvature is computed if the Hessian is sufficiently indefinite.
A linear combination of these vectors define a search direction, along which the
next iterate is found. Theoretical properties of the algorithm are established, and
numerical data from a set of test problems are included.

As the algorithm is stated, if the direction of negative curvature is nonzero, it is
always used to form Pk. From a practical point of view it is not clear if this is the
best use of dk. It is possible to define a number G such that whenever !lg9kl > G,
we may discard the direction of negative curvature and still obtain the convergence
properties of Section 7. This alternative algorithm would allow a scheme for control-
ling that the cosine between pA, and gk is not much smaller than the cosine between
si. and gk, hereby ensuring that the search direction is not significantly closer to
orthco3nality to the negative gradient than the descent direction. The significance
of utilizing a direction of negative curvature was investigated by rerunning the test
problems with 13k set to zero for all k. On those problems where a direction of nega-
tive curvature previously had been used, the number of iterations required to satisfy
the reduction of fk given in Table 8.3 tended to increase. Moreover, the number
of problems for which the convergence criteria were not met increased from six to
twelve.

Finally, we note that the convergence results given in Section 7 imply convergence
to a point where the gradient vector is zero and the Hessian matrix has a smallest
eigenvalue greater than a small negative number. Since a point satisfying the second-
order necessary conditions has nonnegative Hessian eigenvalues, it might appear that
the convergence results are somewhat less satisfactory than those usually given for
methods of this type. However, we observe that the magnitude of the bound on the
smallest eigenvalue may be made as small as required by assigning a suitably small
value for the parameter (. Small values of c affect only the numerical performance
of the method, and not the theoretical convergence properties. Moreover, it may be
observed from Tables 8.1, 8.2 and 8.4 that in most cases the iterates converged to a
point where n, was equal to n, that is the Hessian was positive definite. The only
exceptions are problems where the Hessian at the solution is very ill-conditioned,
singular or undefined (for some of the barrier problems).

Our overall conclusion from the results is that it was possible to reduce the value
of the objective function significantly in a rather small number of iterations by using
directions of negative curvature whenever the lessian was indefinite. However, to
meet stringent convergence criteria was not always possible when the Hessian was
very ill-conditioned or singular at the solution. Also, by running the algorithm
without using the direction of negative curvature, we have the impression that the
ability to compute a direction of negative curvature is not only a theoretical tool
to show convergence, but also a helpful device in order to improve robustness and
efficiency.
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A. Appendix: Properties of the Barrier Test Problems

The barrier test problems originate from a barrier function approach proposed by
Resende et al. [RKR89] for solving 0-1 integer programs. Given an m x n matrix A
and an n-vector b, the 0-1 integer program concerns finding a z in 3?n that belongs
to the set F1, where

F,={z:Az<b, zi=0 or zi=1 for i=1,...n}.

We shall consider only the case where A and b have integer coefficients, since the
analysis is simpler in this case.

Applying the linear transformation x = 2z - e, the 0-1 problem is transformed
to an equivalent problem where all components of the integer solution are ±1. The
transformed problem is converted into a smooth minimization problem by seeking
values in the set F given by

F= x eX:Ax .

I e

The aim is to find a point x* in F with components ±1 by minimizing the barrier
function

1T 1 m+2n
f(x W -n(n - x x) - -

n m+2n y  ln(eT(b - Ax))

(see Resende et a/. [RKR89]).
Although the barrier function is not defined for a point x* with components ± 1,

the following lemma shows that the barrier function has a global minimizer at x*,
since there exist sequences converging to x* for which the function tends to minus
infinity.

Lemma A.1. Assume that the matrix A has at least one row. Furthermore, assume
that {xk}k 0 converges to a point x* E F such that x* has all components ±1. If
Axk < b for all k, and if there exists a positive constant c independent of k, such
that it holds for all k that

min IeT(xk - x*)I > c,

then limk-. f(xk) = -00.
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Proof. For clarity, the iteration subscript k is dropped when subscript i is used to
denote a particular component of zk.

Using properties of logarithms, f(x) may be rewritten as

f(x) 1 _(+ 2 I (A.1)
f+(x)n+ _2n e[(2b - Ae + e-Ax)HF1-(1 - x?) J

Since x* E F with all components ±1, it follows that 2b - Ae - Ax* > 0 and
consequently

lim eT(2b - Ae + e - AXk) _ 1.

Therefore, it may be assumed without loss of generality that AXk < 2b - Ae + e for
all k. If r denotes the vector whose i-th component is given by ri = Ix, - x* I we get

(yn=(I - Xi))' ( -r i(2 - ))

-I-(1 - fI rj(2 - ri)

where it without loss of generality may be assumed that ri < 1 for all i. Dividing
both numerator and denominator by the positive quantity (eTr) ' and using the
existence of the constant c, we derive the inequality

er(2 - ri)
i 1

If m > 0 then limk.,(n - xTk)m/ 2 = 0, and it follows that the argument of the log-
arithm in (A.1) tends to zero as k tends to infinity. Consequently, limk-, f(Xk) =

-oo as required. I

The following lemma shows that there is a one-to-one correspondence between
points in F with all components ±1 and points in Fl.

Lemma A.2. The set F1 is nonempty if and only if there exists a point in F with
all components ± 1.

Proof. Assume that z E Fl. A hitear trtitsformation x = 2z - c yields x E F with
all components ± 1.

Assume that x E F with all components ±1. Let x = 2z - e, and it follows that
z is a vector with all components zero or one, for which Az < b + le. However, A-
and b are integer vectors, and therefore it holds that Az < b. Consequently, z E F1.
I

Lemma A.1 implies that the barrier function has a global minimizer at any point
.* in F with all components ±1. From Lemma A.2 it follows that if such a global

r,,inimizer is found, a point in F, may be identified, thereby providing a solution of
the original 0-1 integer program.
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